KLAUS GERLACH*) und FRITZ KRÖHNKE

Die Reaktion von Pyridiniumbetainen mit α-Nitroso-β-naphthol

Aus dem Chemischen Institut der Universität Gießen (Eingegangen am 20. Oktober 1961)

α-Nitroso-β-naphthol bildet mit dem Pyridiniumbetain des Dithioessigesters unter Pyridinabspaltung ein Naphthoxazin-thion-N-oxyd, mit p-Bromphenacyl-pyridiniumbetain (IV) ein Naphthoxazol. Aus Betain IV und Nitrosonaphthylaminen werden Benzochinoxalin-N-oxyde erhalten.

Die Bildung von Nitronen aus Pyridiniumbetainen und p-Nitroso-dimethylanilin¹⁾ veranlaßte uns, auch α -Nitroso- β -naphthol für diese Reaktion heranzuziehen. Zwar liegt dieses bekanntlich als Naphthochinon-monoxim vor, aber auch am Grundzustand des Nitrosodimethylanilins ist eine chinoide Grenzstruktur in hohem Maße beteiligt ²⁾. Während man sonst bei unserer Nitronsynthese zweckmäßig Pyridiniumsalz und Alkali einsetzt, benutzten wir hier Betaine, um die Bildung von Alkalinitroso-naphtholat zu vermeiden.

In eiskaltem Methanol gaben wir das reaktionsfreudige Dithioessigsäure-methylester-pyridiniumbetain (I)³⁾ mit der Nitrosoverbindung zusammen und erhielten rote Nadeln des cyclischen Nitrons III, eines Naphthoxazin-thion-N-oxyds.

Zunächst könnte, wie mit p-Nitroso-dimethylanilin, unter Pyridinabspaltung ein herkömmliches Nitron (II) entstanden sein, das sofort den Ring zu III schließt. Offenbar gestattet der Gewinn an Mesomerieenergie die bei 0° erfolgende Umesterung, den Austausch der Methylmercapto-Gruppe gegen den Naphthol-Rest.

Um den Ringschluß zu beweisen, stellten wir das neue Nitron III auf analogem Wege mit einer Substanz her, die nur in der Thioester-Gruppe vom Betain I abwich (S-CH₂-CO₂C₂H₅ statt SCH₃). Das in einer Ausbeute von 22% erhaltene Produkt war in allen Eigenschaften sowie nach Schmelzpunkt und Misch-Schmelzpunkt mit III identisch.

^{*)} Teil der Dissertat. K. GERLACH, Univ. Gießen 1960.

¹⁾ F. Kröhnke und E. Börner, Ber. dtsch. chem. Ges. 69, 2006 [1936].

²⁾ W. LÜTTKE, GDCh-Vortrag in Gießen am 26. 5. 1959.

³⁾ F. Kröhnke und K. Gerlach, Chem. Ber. 95, 1118 [1962], voranstehend.

Zum weiteren Studium dieser neuartigen Reaktion wurde das kristalline p-Bromphenacyl-pyridiniumbetain (IV) 4) — wieder in Methanol bei 0° — mit α -Nitroso- β -naphthol umgesetzt. Unter Abspaltung von Pyridin, das als Pikrat isoliert wurde, erhielten wir in 59-proz. Ausbeute gelbe Kristalle (V). Da hier ein Ringschluß wie im Fall II \rightarrow III nicht möglich war, hätte die Reaktion auf der Stufe des Nitrons stehen bleiben können. Der Elementaranalyse wird jedoch nur die Konstitution eines Naphthoxazols gemäß V gerecht, dessen Carbonylgruppe sich mit Phenylhydrazin nachweisen ließ. Wird auch hier Nitronbildung als Primärreaktion angenommen, so ist der Ringschluß zum Beispiel nach folgendem Schema denkbar:

Mit α -Nitroso- β -naphthylamin wurde eine analoge Reaktion erwartet. Beim Erwärmen mit Betain IV in Methanol erhielten wir unter Abspaltung von Pyridin ein farbloses Produkt (VII) in 45-proz. Ausbeute, dessen Analyse für ein entsprechend V gebautes *Imidazol* zutraf. Im Gegensatz zu der Reaktion IV \rightarrow V besteht hier noch eine zweite Konstitutionsmöglichkeit; denn über das als Primärprodukt vermutete Nitron VI könnte sich durch Kondensation der Amino- mit der Carbonylgruppe ein Benzo-chinoxalin-N-oxyd mit derselben Summenformel gebildet haben:

$$\begin{array}{c|c} O & O & O \\ N & O & N \\ \hline \\ VI & VII & VII \end{array}$$

Einen wichtigen Hinweis auf die Konstitution der Verbindung im Sinne der Formel VII gibt der Vergleich des IR-Spektrums von V mit dem der fraglichen Verbindung. Das Naphthoxazol-Spektrum weist bei 1630/cm (KBr) eine starke Bande auf, die unter Berücksichtigung des brom-substituierten Benzolrings der (mit Phenylhydrazin nachgewiesenen) Carbonylgruppe zuzuordnen ist⁵⁾. VII absorbiert im Carbonylgebiet über 1580/cm nicht und gibt — hiermit übereinstimmend — auch kein Phenylhydrazon.

Eine weitere Bestätigung für eine Konstitution gemäß VII brachte die Reaktion des Betains IV mit β -Nitroso- α -naphthylamin. Falls Imidazole entstanden waren,

⁴⁾ F. Kröhnke, Ber. dtsch. chem. Ges. 68, 1187 [1935].

⁵⁾ Vgl. dazu L. J. Bellamy, Ultrarot-Spektrum und chemische Konstitution, S. 107, 109, Verlag Dr. D. Steinkopff, Darmstadt 1955.

mußte man wegen der Imidazol-Tautomerie⁶⁾ gemäß VIII identische Produkte erwarten:

$$R = -COC_6H_4Br(p)$$

$$R = -COC_6H_4Br(p)$$

Wir erhielten in 63-proz. Ausbeute ein leicht cremefarbenes Produkt (IX) von der erwarteten Summenformel, das sich jedoch im Schmelzpunkt (245°) deutlich von VII (301°) unterschied. VII wäre danach ein 3-[p-Brom-phenyl]-7.8-benzo-chinoxalin-1-oxyd, IX die entsprechende 5.6-Benzoverbindung.

Wir danken den Farbenfabriken Bayer AG, besonders Herrn Prof. Dr. O. Bayer, und der Deutschen Forschungsgemeinschaft für ihre Hilfe.

BESCHREIBUNG DER VERSUCHE

[Naphtho-1'.2':5.6-(1.4-oxazin)-thion-(2)-4-oxyd] (III): 0.92 g (5 mMol) I in 10 ccm Chloroform und 0.87 g (5 mMol) a-Nitroso- β -naphthol in 40 ccm Methanol werden unter Eiskühlung zusammengegeben. 0.42 g (36% d. Th.) weinrote Kristalle scheiden sich aus, die aus 100 Tln. Benzol in roten Nadeln vom Schmp. 122° kommen.

Methanol. Pikrinsäure fällt aus der Reaktionslösung Pyridinpikrat aus (Misch-Schmp.; NaOH macht Pyridin frei).

Dithioessigsäure-carbäthoxymethylester-pyridiniumbromid: 1.69 g (10 mMol) Dithioessigsäure-pyridiniumbetain³⁾ werden in 5 ccm Methanol mit 1.13 ccm (10 mMol) Bromessigsäureäthylester versetzt. Unter Selbsterwärmung bildet sich eine rotgelbe Lösung, aus der sich, durch Äther vervollständigt, 2.95 g (88% d. Th.) Kristalle ausscheiden. Hellgelbe, flache Spindeln (aus Äthanol), Schmp. 151°.

$$C_{11}H_{14}NO_2S_2]Br$$
 (336.3) Ber. N 4.16 Gef. N 4.10

In Wasser, Äthanol sowie Chloroform ist das Salz gut löslich.

Betain $(I, -S-CH_2-CO_2C_2H_5 \text{ statt } -SCH_3)$: 3.36 g (10 mMol) des Bromids in 10 ccm Methanol und 5 ccm 2n methanol. NaOH werden in der Kälte zusammengegeben. Goldglänzende Blättchen scheiden sich aus, aus Methanol Schmp. 84° (Zers.).

Das Betain ist in Chloroform sehr gut löslich. Nach wenigen Stunden zersetzt es sich unter Pyridinabspaltung.

⁶⁾ Vgl. dazu W. HÜCKEL, Theoretische Grundlagen der Organischen Chemie, 7. Aufl., Bd. I, S. 557; Akadem. Verlagsgesellschaft, Leipzig 1952; weitere Einzelheiten bringen W. Otting, Chem. Ber. 89, 2887 [1956]; H. Bredereck, R. Gompper und F. Reich, ebenda 93, 723 [1960].

III aus Dithioessigsäure-carbäthoxymethylester-pyridiniumbetain: 1 g (4 mMol) Betain werden in 2.5 ccm Chloroform mit 0.7 g (4 mMol) α-Nitroso-β-naphthol in 35 ccm Methanol bei 0° zusammengegeben, worauf man 0.21 g (22% d. Th.) eines braunen Rohprodukts erhält. Aus Benzol kommt III in roten Nadeln vom Schmp. und Misch-Schmp. 122°.

2-[p-Brom-benzoyl]-[naphtho-1'.2':4.5-oxazol] (V): Die eiskalten Lösungen von 2.76 g (10 mMol) p-Bromphenacyl-pyridiniumbetain in 15 ccm Methanol und 1.73 g (10 mMol) α -Nitroso- β -naphthol in 60 ccm Methanol werden vereinigt. Man erhält 2.08 g (59 % d. Th.) eines rotbraunen Pulvers, aus Äthanol (mit Kohle) hellgelbe, lange, verfilzte Nadeln vom Schmp. 163°. V ist spielend leicht in Essigester, weniger gut in Eisessig löslich.

C₁₈H₁₀BrNO₂ (352.2) Ber. C 61.33 H 2.86 Br 22.69 N 3.97 O 9.08 Gef. C 61.55, 61.4 H 3.07, 2.8 Br 22.7, 22.7 N 3.9, 3.8 O 9.25, 9.0

Pikrinsäure fällte aus der Reaktionslösung ein Pikrat, das als Pyridinpikrat identifiziert wurde (Misch-Schmp.; beim Erwärmen mit NaOH wird Pyridin frei).

Phenylhydrazon: 0.35 g (1 mMol) V werden in 10 ccm Eisessig mit 0.5 ccm Phenylhydrazin $^{1}/_{2}$ Stde. auf dem Wasserbad erwärmt. Die schon in der Hitze erfolgende Kristallisation wird durch Wasserzusatz vervollständigt; Ausb. 0.40 g (90% d. Th.). Aus 40 Tln. Essigester gelbe Nadeln vom Schmp. 214-216°.

C₂₄H₁₆BrN₃O (442.3) Ber. N 9.50 Gef. N 9.59

3-[p-Brom-phenyl]-7.8-benzo-chinoxalin-1-oxyd (VII): 0.86 g (5 mMol) α-Nitroso-β-naph-thylamin in 25 ccm Methanol werden mit 1.38 g (5 mMol) p-Bromphenacyl-pyridinium-betain in 8 ccm Methanol aufgekocht. In einer Ausbeute von 0.80 g (45 % d. Th.) scheiden sich farblose Kristalle aus, die mit Äthanol gewaschen und aus 250 Tln. Benzol unter Zusatz von Kohle zu farblosen Nadeln vom Schmp. 301° umkristallisiert werden.

C₁₈H₁₁BrN₂O (351.2) Ber. C 61.55 H 3.16 N 7.97 Gef. C 61.24 H 2.84 N 8.00

Aus der Reaktionslösung scheidet Pikrinsäure Pyridinpikrat ab (Misch-Schmp.; NaOH macht Pyridin frei).

3-[p-Brom-phenyl]-5.6-benzo-chinoxalin-1-oxyd (IX) wird analog zu VII mit β -Nitroso-a-naphthylamin erhalten. Es scheiden sich 1.1 g eines braunen Pulvers (63% d. Th.) aus, das mit Methanol gewaschen und aus 100 Tln. Benzol mit Kohle zu schwach cremefarbenen Nadeln vom Schmp. 245° umkristallisiert wird (Misch-Schmp. mit VII: 230°).

C₁₈H₁₁BrN₂O (351.2) Ber. C 61.55 H 3.16 N 7.97 Gef. C 61.65 H 3.28 N 7.94